AAIC 2017

Bryostatin Phase 2 Trial Cognition & Activities of Daily Living in Moderate to Severe Alzheimer's Disease: Report on Safety and Efficacy

Martin R. Farlow, MD; Jeffrey M. Burns, MD, MS; Kenneth J. Gorelick, MD; David R. Crockford, BA; Elaine Grenier, BS; Susanne Wilke, PhD; Ellen C. Cooper, MD; and Daniel L. Alkon, MD

> Presenting Author: Martin R. Farlow, MD Indiana Alzheimer Disease Center Indianapolis, Indiana

> > Developing Topics: Clinical Trials DT-02-01, Oral Presentation #19955 Wednesday, 19 July 2017 4:15 PM - 4:30 PM / ExCeL London

Martin R. Farlow, MD

Accera, AstraZeneca, Avanir, Axovant, AZTherapies, Biogen, Boehringer Ingelheim, Chase Pharmaceuticals, Eisai, Eli Lilly & Company, FORUM Pharmaceuticals, Genentech, INC Research, KCRN Research, Longeveron, Lundbeck, Medavante, Medtronic, Merck & Co. Inc., Neurotrope Biosciences, Novartis, Proclara (formerly Neurophage Pharmaceuticals), Roche, Suven Life Sciences, Ltd.

- Macrolide lactone, initially isolated from the marine bryozoan Bugula neritina
- Potent modulator of protein kinase C (PKC) isozyme ε
- PKCε—plays a key role in synaptogenesis, learning
 - Potential in AD as a disease modifier

Molecular structure of bryostatin-1

Bugula neritina California Academy of Sciences

Halford B. Chemical & Engineering News. 2011;89(43):10-17; Russo P et al. Mar Drugs. 2015;14(1): 5.

- Autopsy studies: synaptic loss correlated tightly with cognitive impairment observed in AD¹
- Preclinical studies: Bryostatin was shown to have a multimodal effect²⁻⁶:

Clinical studies prior to AD trials:

- >1400 patient exposures in NCI cancer studies
 - In cancer studies, bryostatin was well tolerated at low doses ≤25µg/m² —myalgia was dose-limiting at higher doses

¹Terry RD et al. Ann Neurol. 1991;30(4):572-580. ²Sen A et al. J Biol Chem. 2012;287(19):15947-15958. ³Hongpaisan J et al. J Neurosci. 2011;31(2):630-643. ⁴Alkon DL et al. Trends Pharmacol Sci. 2007;28(2):51-60. ⁵Hongpaisan J, Alkon DL. Proc Natl Acad Sci U S A. 2007;104(49):19571-19576. ⁶Sen A et al. J Biol Chem. 2016;291(32):16462-16467.

Bryostatin: Induces Synaptic Networks & Protects Against Aβ Toxicity

Increased presynaptic & postsynaptic staining indicates increased synaptic formation

Red = Presynaptic staining (Synaptophysin) Green = Postsynaptic staining (PSD-95) Yellow = Merged

Neurons Treated With Aβ Oligomers^a Show Decreased Synaptic Integrity Neurons Treated With Bryostatin Show Enhanced Growth of Synaptic Networks & Protection Against Aβ Oligomers

Images courtesy of Daniel L. Alkon, MD

20 um

Cultured Rat Hippocampal Neuronal Networks

^aAmylospheroids (ASPDs)

Sen A et al. J Biol Chem. 2012;287(19):15947-15958; Sen A et al. J Biol Chem. 2016;291(32):16462-16467.

Bryostatin: Prevents Amyloid Plaque Formation

Bryostatin Reduces Amyloid Plaque Formation in AD Transgenic Mouse Model (5X-FAD^a)

Amyloid Plaques in Hippocampal CA-1 Area (Confocal microscopy of amyloid plaques stained by Thioflavin-5)

^a5X-FAD is a mouse strain that has a more aggressive form of AD containing 5 familial Alzheimer's disease (FAD) mutations: Swe, Lon, Flo, M146L, L28V (Hall AM et al. *Brain Res Bull*. 2012;88(1):3-12) Hongpaisan J et al. *J Neurosci*. 2011;31(2):630-643.

5x-FAD+

Vehicle

5X-FAD+

Bryostatin

Bryostatin: Improves Cognitive Function—Prevents Loss of Learning & Memory

Spatial water maze learning & memory retention of 5X-FAD transgenic mice^a

Learning^b Memory Retention^b Day 1-6 After Dosing **Observed 2 Weeks After Dosing** 3 100 🔺 Control+Bryostatin 😑 TG+Vehicle 🔺 TG+Bryostatin Control+Vehicle NS **Target** quadrant ratio Escape latency (s) 80 2 P≤.05 60 40 20 0 0 1st Trial Dav Control TG+ TG+ Control 2 6 5 Vehicle Vehicle Bry Bry **Baseline**

^a5X-FAD is a mouse strain that has a more aggressive form of AD containing 5 familial Alzheimer's disease (FAD) mutations: Swe, Lon, Flo, M146L, L28V. (Hall AM et al. *Brain Res Bull*. 2012;88(1):3-12) ^bEffects also observed in rabbits, mice & invertebrates NS=Not significant; TG=Transgenic. Hongpaisan J et al. *J Neurosci.* 2011;31(2):630-643.

Bryostatin:

PKC Activity Profile in Vitro—Initial Activation, Prolonged Down-Regulation & Recovery

In Vitro Bryostatin—Cultured Human Neuroblastoma Cells PKC dose-response, continuous dosing

Bryostatin: Phase 2 Study Report

A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Study Assessing the Safety, Tolerability & Efficacy of Bryostatin in the Treatment of Moderately Severe to Severe Alzheimer's Disease Primary objective: Assess safety & tolerability, bryostatin vs placebo

Secondary objectives:

- Dosing
- Efficacy at week 13:
 - SIB (primary efficacy end point)
 - ADCS-ADL-SIV

Double-blind, randomized, placebo-controlled trial

- Moderate-to-severe & severe patients (MMSE 4 – 15)
- Stable background therapy with cholinesterase inhibitors &/or memantine allowed
- Three arms (1:1:1)
 - 20µg & 40µg dose levels, placebo
 - 7 doses over 12 weeks: 0*, 1*, 3, 5, 7, 9, 11
 - Efficacy evaluated at weeks 5, 9, 13 (primary end point)

 Primary analysis: Mixed Model for Repeated Measures (MMRM) of SIB at week 13

- Two prespecified primary analysis populations:
 - mITT^a (at least 1 dose given, at least 1 on-treatment efficacy assessment)
 - Completers: mITT population, completed week 13 assessment
- Screening trial¹
 - Sample size based on safety
 - 80% power to detect a 6.5 point treatment benefit in SIB
 - α = 0.1, one-sided

	Placebo	Bryostatin 20µg	Bryostatin 40µg
Randomized Population	50	49	48
Safety Analysis Population (≥ 1 dose)	48	46	47
Completed study	39 (81.3)	38 (82.6)	29 (61.7)
Withdrew early from the study	9 (18.8)	8 (17.4)	18 (38.3)
mITT Population (≥1 dose, ≥1 eff eval)	46	44	45
Completer Analysis Population ^a	42	38	33

^{a.} 7 subjects withdrew early but met prospective criteria for inclusion in the Completer Analysis Population (ie had a week 13 assessment).

	Placebo	Bryostatin 20µg	Bryostatin 40µg
Withdrew early from the study	9 (18.8)	8 (17.4)	18 (38.3)
Primary reason for early withdrawal			
Noncompliance with the protocol	1 (2.1)	0 (0.0)	1 (2.1)
Adverse event	5 (10.4)	2 (4.3)	4 (8.5)
Investigator termination	1 (2.1)	1 (2.2)	0 (0.0)
Withdrawal of consent	2 (4.2)	4 (8.7)	12 (25.5)
Other	0 (0.0)	1 (2.2)	1 (2.1)

Bryostatin Phase 2: Dropouts by Time & Dose

Lower dropouts for 20µg & placebo arms vs 40µg arm

Treatment Emergent Adverse Events (TEAEs)^a

20µg dose, but not the 40µg dose, had an acceptable safety profile

	Placebo (N=48)	Bryostatin 20 μg (N=46)	Bryostatin 40 μg (N=47)	All Bryostatin (N=93)
Serious AE	3 (6%)	1 (2%)	6 (13%)	7 (8%)
Fatal AE ^b	0	0	1 (2%) ^ь	1 (1%) ^b
Any TEAE	28 (58%)	30 (65%)	39 (83%)	69 (74%)
• Myalgia	0	1 (2%)	4 (9%)	5 (5%)
• Diarrhea	1 (2%)	5 (11%)	5 (11%)	10 (11%)
Fatigue	0	1 (2%)	5 (11%)	6 (7%)
Infusion site reaction	3 (6%)	8 (17%)	7 (15%)	15 (16%)
Decreased appetite	2 (4%)	1 (2%)	6 (13%)	7 (8%)
Weight decreased	0	0	5 (11%)	5 (5%)
• Fall	1 (2%)	1 (2%)	4 (9%)	5 (5%)

^aTEAEs occurring in >5% in any treatment group and with treatment differences ^bFatal AE: Considered unrelated to study drug.

Large % of patients on stable concurrent AD drug treatment

	Placebo (N=46)	Bryostatin, 20 μg (N=44)	Bryostatin, 40 μg (N=45)
Age (mean, sd)	73.4 (7.67)	71.2 (8.20)	70.1 (7.66)
Sex (women, %)	48%	60%	49%
MMSE (mean, sd)	10.0 (3.48)	10.5 (3.25)	10.1 (3.48)
SIB (mean, sd) Range	76.2 (16.70) 27 - 99	79.0 (17.73) 13 - 97	76.2 (19.64) 11 - 96
Years AD diagnosed (mean, sd)	5.5 (2.95)	4.6 (3.05)	5.1 (2.73)
Concurrent AD Drugs n (%)			
Acetylcholinesterase inhibitor	38 (83%)	36 (82%)	38 (84%)
Memantine	30 (65%)	25 (57%)	36 (80%)
Both	28 (61%)	21 (48%)	30 (67%)
None	6 (13%)	4 (9.1%)	1 (2.2%)

SIB Change From Baseline—mITT & Completer Analyses at 13 Weeks

Consistency of effect for 20µg vs placebo across all time points

	Week 5	Week 9	Week 13
Difference 20 µg	3.0	1.0	1.9
1-sided p-value	0.056	0.290	0.134
Difference 40 µg	0.6	-0.6	0.8
1-sided p-value	0.368	0.638	0.314

	Week 5	Week 9	Week 13
Difference 20 µg	4.0	1.9	2.6
1-sided p-value	0.016	0.165	0.070
Difference 40 mg	2.1	0.1	1.5
1-sided p-value	0.137	0.476	0.191

ADCS-ADL-SIV Change From Baseline—mITT & Completer Analyses at 13 Weeks ADCS-ADL–SIV treatment effect strongest at 13 weeks

	Week 5	Week 9	Week 13
Difference 20 µg	0.6	0.1	1.4
1-sided p-value	0.272	0.457	0.104
Difference 40 µg	-0.2	-0.2	0.8
1-sided p-value	0.572	0.560	0.235

SIB & ADCS-ADL-SIV—mITT & Completer Analyses Cohen's D Comparison^a

Consistency in Cohen's D effect sizes across both the SIB & the ADCS-ADL-SIV scales

Effect Size: 0.20 = Small Effect, 0.50 = Medium Effect, 0.80 = Large Effect

	Placebo vs 20µg		Placebo vs 40µg	
	Delta	Cohen's D	Delta	Cohen's D
SIB mITT	1.9	0.25	0.8	0.10
SIB Completers	2.6	0.34	1.5	0.19
ADCS-ADL-SIV mITT	1.4	0.28	0.8	0.16
ADCS-ADL-SIV Completers	1.6	0.32	1.1	0.22

^aCohen's D effect size is the treatment group difference divided by the pooled standard deviation of the change scores, a Cohen's D of 0.30 is 30% of a standard deviation of difference between the groups. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Earlbaum Associates; 1988.

- Bryostatin is the first PKCe activator tested in AD clinical trials—a new MOA
- Bryostatin has multimodal effects in AD models—potential disease modifier
- Exploratory Phase 2 study designed to assess safety, dosing, & potential efficacy in moderate to severe AD
 - First placebo-controlled, multi-dose trial of bryostatin in AD patients
 - Safety & tolerability: better for $20\mu g$ than the $40\mu g$ dose
 - Efficacy : consistent treatment effect for SIB & ADCS-ADL-SIV at 13 weeks for the $20\mu g$ dose
 - Observed effects added onto standard-of-care regimens
- 20µg dose is appropriate for additional study

Bryostatin Phase 2: Future Development

- Additional studies warranted:
 - Optimal dose finding & regimen
 - Larger study to assess efficacy
 - Longer treatment duration
 - Earlier stage disease
- Also exploring:
 - Follow-on studies for target engagement/biomarkers
 - Different routes of administration:
 - subcutaneous injection
 - oral